skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grispos, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Perumalla, Kalyan; Lopez Jr., Juan; Siraj, Ambareen (Ed.)
    Executable steganography, the hiding of software machine code inside of a larger program, is a potential approach to introduce new software protection constructs such as watermarks or fingerprints. Software fingerprinting is, therefore, a process similar to steganography, hiding data within other data. The goal of fingerprinting is to hide a unique secret message, such as a serial number, into copies of an executable program in order to provide proof of ownership of that program. Fingerprints are a special case of watermarks, with the difference being that each fingerprint is unique to each copy of a program. Traditionally, researchers describe four aims that a software fingerprint should achieve. These include the fingerprint should be difficult to remove, it should not be obvious, it should have a low false positive rate, and it should have negligible impact on performance. In this research, we propose to extend these objectives and introduce a fifth aim: that software fingerprints should be machine independent. As a result, the same fingerprinting method can be used regardless of the architecture used to execute the program. Hence, this paper presents an approach towards the realization of machine-independent fingerprinting of executable programs. We make use of Low-Level Virtual Machine (LLVM) intermediate representation during the software compilation process to demonstrate both a simple static fingerprinting method as well as a dynamic method, which displays our aim of hardware independent fingerprinting. The research contribution includes a realization of the approach using the LLVM infrastructure and provides a proof of concept for both simple static and dynamic watermarks that are architecture neutral. 
    more » « less